Distributed by:

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721

Advance Information

Jameco Part Number 25355

MC68701 MICROCOMPUTER UNIT (MCU)

The MC68701 is an 8-bit single chip microcomputer unit (MCU) which significantly enhances the capabilities of the M6800 family of parts. It can be used in production systems to allow for easy firmware chances with minimum delay or it can be used to emulate the MC6801/03 To software development. It includes an upgraded M6800 microprocessor unit (MPU) with upward source and object code compatibility. Execution times of key instructions have been improved and several new instructions have been added including an unsigned multiply. The MCU can function as a monolithic microcomputer or can be expanded to a 64K byte address space. It is TTL compatible and requires one +5 volt power supply for nonprogramming operation. An additional Vpp power supply is needed for EPROM programming. On-chip resources include 2048 bytes of EPROM, 128 bytes of RAM, Serial Communications Interface (SCI), parallel I/O, and a three function Programmable Timer. A summary of MCU features includes:

- Enhanced MC6800 Instruction Set
- 8 × 8 Multiply Instruction
- Serial Communications Interface (SCI)
- Upward Source and Object Code Compatibility with the MC6800
- 16-Bit Three-Function Programmable Timer
- Single-Chip or Expanded Operation to 64K Byte Address Space
- Bus Compatibility with the M6800 Family
- 2048 Bytes of UV Erasable, User Programmable ROM (EPROM)
- 128 Bytes of RAM (64 Bytes Retainable on Powerdown).
- 29 Parallel I/O and Two Handshake Control Lines
- Internal Clock Generator with Divide-by-Four Output
- −40 to 85°C Temperature Range

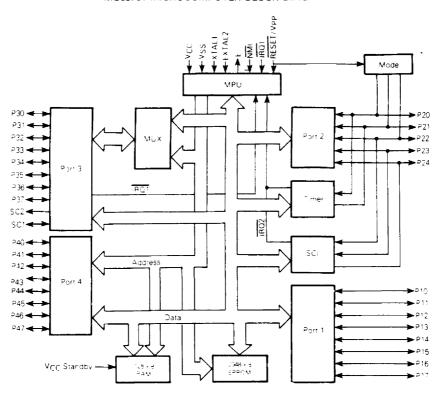
GENERIC INFORMATION

Package Type	Frequency (MHz)	Temperature	Generic Number
Ceramic	1.0	0°C to 70°C	MC68701L
L Suffix	1.0	– 40°C to 85°C	MC68701CL
	1.25	0°C to 70°C	MC68701L-1
	1.25	– 40°C to 85°C	MC68701CL-1
	1.5	0°C to 70°C	MC68A701L
	2.0	0°C to 70°C	MC68B701L

MC68701

MOS

(N-CHANNEL, SILICON-GATE, DEPLETION LOAD)


MICROCOMPUTER WITH EPROM

PIN ASSIGNMENT

∨ss ū ⊨ ● `	→ 40 1 E
XTAL1 🗖 2	39 II SC 1
EXTAL 2 🛛 3	38 ∏ SC2
NMI 0 4	37 2 P30
iRQ1 □ 5	36 P31
RESET/VPP06	35 P32
∨cc[7	34 1 P33
P20 [8	33 🗖 P34
P21 □ 9	32 1 P35
P22 🕻 10	31 2 P36
P23 🛘 11	30 1 P37
P 24 🛘 12	29 1 P40
P10 [13	28 1 P41
P11 [14	27 7 P42
P1 2 🖸 15	26 7 P43
P13 0 16	25 1 P44
P14 [17	24 1 P45
P15 [18	23 1 P46
P16 [19	22] P47
P17 🖸 20	21 2 Vcc
	Standby

MC68701 MICROCOMPUTER BLOCK DIAGRAM

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.3 to $+7.0$	V
Input Voltage	V _{in}	-0.3 to $+7.0$	V
Operating Temperature Range MC68701 MC68701C	ТД	T _L to T _H 0 to 70 – 40 to 85	°C
Storage Temperature Range	Tstg	0 to 85	эC

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Rating
Thermal Resistance	A . A	50	°C/W
Ceramic Package	#JA		

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages. to this high-impedance circuit. For proper operation it is recommended that Vin and Vout be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{CC}$. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS or VCC).

(1)

POWER CONSIDERATIONS

The average chip-junction temperature, TJ, in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \bullet \theta_{JA})$$

Where:

TA = Ambient Temperature, °C

θ JA = Package Thermal Resistance, Junction-to-Ambient, °C/W

PD = PINT + PPORT

PINT=ICC × VCC, Watts - Chip Internal Power

PPORT = Port Power Dissipation, Watts - User Determined

For most applications PPORT

PINT and can be neglected. PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads.

An approximate relationship between PD and TJ (if PPORT is neglected) is:

$$P_D = K + (T_J + 273 ^{\circ}C)$$
 (2)

Solving equations 1 and 2 for K gives: $K = PD \bullet (TA + 273 °C) + \theta JA \bullet PD^2$

for a known TA. Using this value of K the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value of TA.

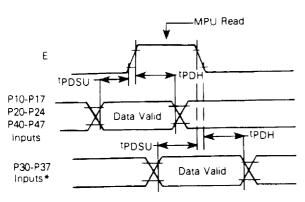
CONTROL TIMING ($V_{CC} = 5.0 \text{ V } \pm 5\%$, $V_{SS} = 0$, $T_A = 0$ to 70 °C)

Characteristic	Cbl	MCE	C68701 N		MC68701-1		MC68A701		MC68B701	
Citalacteristic	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Frequency of Operation	fo	0.5	1.0	0.5	1.25	0.5	15	0.5	2.0	MHz
Crystal Frequency	fXTAL	2.0	4.0	2.0	5.0	2.0	6.0	2.0	8.0	MHz
External Oscillator Frequency	4f _O	2.0	4.0	2.0	5.0	2.0	6.0	2.0	8.0	MHz
Crystal Oscillator Start Up Time	trc	_	100	_	100		100	-	100	ms
Processor Control Setup Time	tPCS	200	-	170	-	140	-	110		ns

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ Vdc} \pm 5\%$, $V_{SS} = 0$, $T_A = T_L$ to T_H , unless otherwise noted)

				MC68701		1			
Characteristic		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input High Voltage	RESET Other Inputs*	V _{1H}	V _{SS} +4.0 V _{SS} +2.0	1 1	Vcc Vcc	V _{SS} +4.0 V _{SS} +2.2	-	Vcc Vcc	V
Input Low Voltage	RESET Other Inputs*	VIL	V _{SS} = 0.3 V _{SS} = 0.3	_	V _{SS} +0.4 V _{SS} +0.8	V _{SS} = 0.3 V _{SS} = 0.3	-	V _{SS} +04 V _{SS} +08	V
Input Current, See Note (V _{in} = 0 to 2.4 V)	Port 4 SCI	[‡] in	_ _	_ _	0.6 1.0	_ _	-	1 0 1 6	mΑ
Input Current (V _{in} = 0 to 5.25 V)	NMI, IRQ1	lin	-	15	2.5	_	15	5	μА
Input Current (V _{in} = 0 to 0.4 V) (V _{in} = 4.0 V to V _{CC})	RESET/Vpp	l _{in}	_	- 2.0 -	_ 8.0	_ _ _	- 2.0 -	8 0	mΑ
Hi-Z (Off State) Input Current (Vin = 0.5 to 2.4 V)	Ports 1, 2, and 3	TSI	_	2	10	_	2	20	μΑ
Output High Voltage $(I_{Load} = -65 \mu A, V_{CC} = Min)$ $(I_{Load} = -100 \mu A, V_{CC} = Min)$	Port 4, SC1, SC2 Other Outputs	∨он	V _{SS} +2.4 V _{SS} +2.4	- -	<u>-</u> -	V _{SS} +2.4 V _{SS} +2.4	<u>-</u>	- +	V
Output Low Voltage ILoad = 2.0 mA, VCC = Min)	All Outputs	VOL	-	_	V _{SS} +0.5	-	_	V _{SS} +0.6	V
Darlington Drive Current (V _O = 1.5 V)	Port 1	¹ ОН	1.0	2.5	10.0	1.0	2.5	10.0	mA
Internal Power Dissipation (Measured at TA = TL in Steady	-State Operation)	PINT	_	-	1500	sinde	_	1500	mW
input Capacitance $(V_{in} = 0, T_A = 25^{\circ}C, f_O = 1 \text{ MHz})$	Port 3, Port 4, SCI Other Inputs	Cin	_ _	- -	12.5 10.0		_	12.5 10.0	рF
V _{CC} Standby	Powerdown Powerup	VSBB VSB	4.0 4.75	- -	5.25 5.25	4.0 4.75	- -	5 25 5 25	V
Standby Current	Powerdown	ISBB	_	_	6.0	-		8.0	mΑ
Programming Time Per Byte (TA =	25°C)	tpp	25	-	50	25	-	50	ms
Programming Voltage (T _A = 25°C)		Vpp	20.0	21.0	22.0	20.0	21.0	22.0	V
Programming Current (VRESET = Vpp, $T_A = 25$ °C)	see Figure 15	Ірр	-	30	50	_	30	50	mΑ

^{*}Except mode programming levels; see Figure 15.


NOTE: RESET/VPP I_{in} differs from MC6801 and MC6803 values.

PERIPHERAL PORT TIMING (Refer to Figures 3-6)

Characteristics		MC68701		MC68701-1		MC68A701		MC68B701		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Onn
Peripheral Data Setup Time	tPDSU	200	_	200	_	150	_	100	-	ns
Peripheral Data Hold Time	^t PDH	200	_	200	-	150	_	100	1	ns
Delay Time, Enable Positive Transition to OS3 Negative Transition	tOSD1	_	350	_	350	1	300	_	250	ns
Delay Time, Enable Positive Transition to OS3 Positive Transition	tOSD2	-	350	-	350	-	300	_	250	ns
Delay Time, Enable Negative Transition to Peripheral Data Valid	tPWD		350	_	350	1	300	-	250	ns
Delay Time, Enable Negative Transition to Peripheral CMOS Data Valid	tcmos	_	2.0	ş	2.0	1	2.0	_	2.0	μS
Input Strobe Pulse Width	†PWIS	200	-	200	-	150		100	_	ns
Input Data Hold Time	tін	50	_	50	_	40	_	30	_	ns
Input Data Setup Time	tIS	20	<u> </u>	20	_	20		20	_	ns

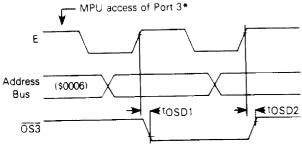


FIGURE 1 — DATA SETUP AND HOLD TIMES (MPU READ)

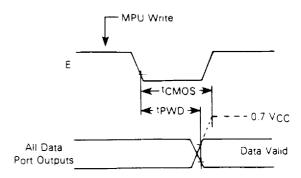
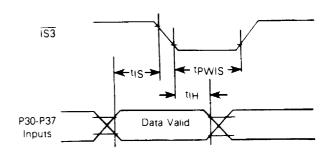

* Port 3 Non-Latched Operation (LATCHE ENABLE = 0)

FIGURE 3 — PORT 3 OUTPUT STROBE TIMING (SINGLE-CHIP MODE)

* Access matches Output Strobe Select (OSS = 0, a read; OSS = 1, a write)


FIGURE 2 — DATA SETUP AND HOLD TIMES (MPU WRITE)

NOTES:

- 1. 10 k Pullup resistor required for Port 2 to reach 0.7 VCC
- 2. Not applicable to P21
- 3. Port 4 cannot be pulled above VCC

FIGURE 4 — PORT 3 LATCH TIMING (SINGLE-CHIP MODE)

NOTE: Timing measurements are referenced to a low voltage of 0.8 volts and a high voltage of 2.0 volts unless otherwise noted.

FIGURE 5 - CMOS LOAD

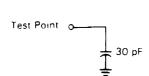
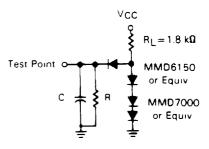
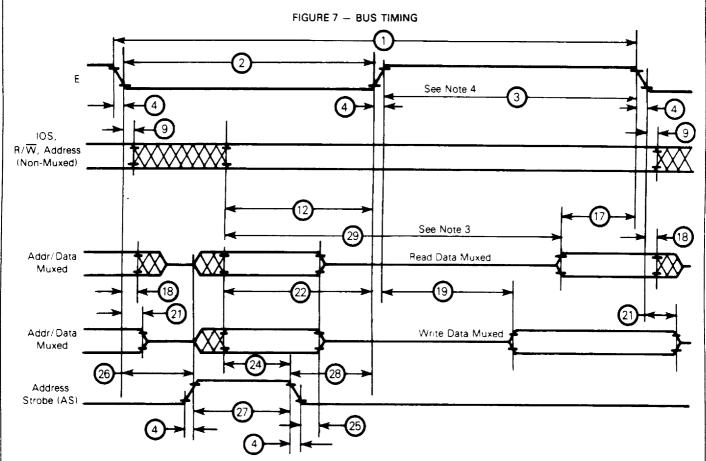



FIGURE 6 - TIMING TEST LOAD PORTS 1, 2, 3, 4

C = 90 pF for P30-P37, P40-P47, E, SC1, SC2 = 30 pF for P10-P17, P20-P24 R = 37 kΩ for P40-P47, SC1, SC2, = 24 kΩ for P10-P17, P20-P24, P30-P37, E



BUS TIMING (See Notes 2 and 3)

Ident	Characteristic	Sumbal	MC68701		MC68701-1		MC68A701		MC68B701		
Number		Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
1	Cycle Time	tcyc	1.0	2.0	0.8	2.0	-	2.0	0.5	2.0	μS
2	Pulse Width, E Low	PWEL	430	1000	360	1000	300	1000	210	1000	ns
3	Pulse Width, E High	PWEH	450	1000	360	1000	300	1000	220	1000	ns
4	Clock Rise and Fall Time	t _r , tf	-	25	_	25	_	25		20	ns
9	Address Hold Time	^t AH	20	_	20	_	20	_	10		ns
12	Non-Muxed Address Valid Time to E*	tAV	200	_	150	_	115	-	70	_	ns
17	Read Data Setup Time	tDSR	80	_	70	_	60	_	40	_	ns
18	Read Data Hold Time	[†] DHR	10	_	10	_	10	-	10		ns
19	Write Data Delay Time	tDDW	-	225	-	200	_	170	-	120	ns
21	Write Data Hold Time	₹DHW	20	-	20	_	20	_	10	_	ns
22	Multiplexed Address Valid Time to E Rise*	tAVM	200	_	150	_	115	_	80	_	ns
24	Multiplexed Address Valid Time to AS Fall*	tASL	60	_	50	_	40		20		ns
25	Multiplexed Address Hold time	†AHL	20	_	20	_	20	_	10		ns
26	Delay Time, E to AS Rise*	[†] ASD	90**		70**	_	60**	_	45**	-	ns
27	Pulse Width, AS High*	PWASH	220	_	170	-	140	_	110	_	ns
28	Delay Time, AS to E Rise*	†ASED	90	_	70	_	60	-	45		ns
29	Usable Access Time*	tACC	595	_	465	_	380	_	270	_	ns

^{*} At specified cycle time.

^{**}tASD parameters listed assume external TTL clock drive with 50% ±5% duty cycle. Devices driven by an external TTL clock with 50% ±1% duty cycle or which use a crystal have the following tASD specification: 100 nanoseconds minimum (1.0 MHz devices), 80 nanoseconds minimum (1.25 MHz devices), 65 nanoseconds minimum (1.5 MHz devices), 50 nanoseconds minimum (1.26 MHz devices), 65 nanoseconds minimum (1.27 MHz devices), 65 nanoseconds minimum (1.28 MHz

NOTES:

- 1. Voltage levels shown are V_L≤0.5 V, V_H≥2.4 V, unless otherwise specified.
- 2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise specified.
- 3. Usable access time is computed by 12+3-17+4.
- 4. Memory devices should be enabled only during E high to avoid port 3 bus contention.

INTRODUCTION

The MC68701 is an 8-bit monolithic microcomputer which can be configured to function in a wide variety of applications. The facility which provides this extraordinary flexibility is its ability to be hardware programmed into eight different operating modes. The operating mode controls the configuration of 18 of the 40 MCU pins, available on-chip resources, memory map, location (internal or external) of interrupt vectors, and type of external bus. The configuration of the remaining 22 pins is not dependent on the operating mode.

Twenty-nine pins are organized as three 8-bit ports and one 5-bit port. Each port consists of at least a Data Register and a write-only Data Direction Register. The Data Direction Register is used to define whether corresponding bits in the Data Register are configured as an input (clear) or output (set).

The term "port," by itself, refers to all of the hardware associated with the port. When the port is used as a "data port" or "I/O port," it is controlled by the port Data Direction Register and the programmer has direct access to the port pins using the port Data Register. Port pins are labled as Pij where i identifies one of four ports and j indicates the particular bit.

The Microprocessor Unit (MPU) is an enhanced MC6800 MPU with additional capabilities and greater throughput. It is upward source and object code compatible with the

MC6800. The programming model is depicted in Figure 8 where Accumulator D is a concatenation of Accumulators A and B. A list of new operations added to the M6800 instruction set are shown in Table 1.

The basic difference between the MC6801 and the MC68701 is that the MC6801 has an onboard ROM while the MC68701 has an onboard EPROM. The MC68701 is pin and code compatible with the MC6801 and can be used to emulate the MC6801, allowing easy software development using the onboard EPROM. Software developed using the MC68701 can then be masked into the MC6801 ROM.

In order to support the onboard EPROM, the MC68701 differs from the MC6801 as follows:

- (1) Mode 0 in the MC6801 is a test mode only, while in the MC68701 Mode 0 is also used to program the onboard EPROM and has interrupt vectors at \$BFF0-\$BFFF rather than \$FFF0-\$FFFF.
- (2) The MC68701 RAM/EPROM Control Register has two bits used to control the EPROM in Mode 0 that are not defined in the MC6801 RAM Control Register.
- (3) The RESET/Vpp pin in the MC68701 is dual purpose, used to supply EPROM power as well as to reset the device; while in the MC6801 the pin is called RESET and is used only to reset the device.

8-Bit Accumulators A and B Or 16-Bit Double Accumulator D D Index Register (X) Х Stack Pointer (SP) SP Program Counter (PC) PC 0 Condition Code Register (CCR) Carry/Borrow from MSB Overflow Zero Negative Interrupt Half Carry (From Bit 3)

FIGURE 8 - MC68701/6801/6803 PROGRAMMING MODEL